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The explicit Feynman rules are given for massive particles of any spin j , in both a 2j-\- 1-component and 
a 2(2/+l)-component formalism. The propagators involve matrices which transform like symmetric trace-
less tensors of rank 2j; they are the natural generalizations of the 2X2 four-vector v* and 4X4 four-vector 
7" for j=J. Our calculation uses field theory, but only as a convenient instrument for the construction of a 
Lorentz-invariant S matrix. This approach is also used to prove the spin-statistics theorem, crossing sym
metry, and to discuss T, C, and P . 

I. INTRODUCTION 

THIS article will develop the relativistic theory of 
higher spin, from a point of view midway between 

that of the classic Lagrangian field theories and the 
more recent 5-matrix approach. Our chief aim is to 
present the explicit Feynman rules for perturbation 
calculations, in a formalism that varies as little as 
possible from one spin to another. Such a formalism 
should be useful if we are to treat particles like the 3-3 
resonance as if they were elementary, and is perhaps in-
indispensable if we are ever to construct a relativistic 
perturbation theory of Regge poles. 

Our treatment1 is based on three chief assumptions. 
(1) Perturbation theory. We assume that the S matrix 

can be calculated from Dyson's formula: 

£ = £ _ / dty'dtnT{Hf(h)>-Hf(tn)}, (1.1) 
«=o n\ J_oo 

Here we have split the Hamiltonian H into a free-
particle part Ho and an interaction Hf, and define Hf (t) 
as the interaction in the interaction representation: 

Hf (t)sexp(iHof)Hf exp(-iHot). (1.2) 

(2) Lorentz invariance of the S matrix. We require 
that S be invariant under proper orthochronous Lorentz 
transformations. This certainly imposes a much stronger 
restriction on Ho and Hf than that they just transform 
like energies. A sufficient and probably necessary con
dition for the invariance of S is: 

• / • 

H'(t)= dsxW(x,t), (1.3) 

where: 
(a) 3C(#) is a scalar. That is, to every inhomogeneous 

Lorentz transformation #M—>AfX
vx

v+ali there corre
sponds a unitary operator U[A,a~} such that 

27[A,a]0C(x)£/-1[A,a]=3C(A^+a). (1.4) 

* Research supported in part by the U. S. Air Force Office of 
Scientific Research, Grant No. AF-AFOSR-232-63. 

t Alfred P. Sloan Foundation Fellow. 
1 1 have recently learned that a similar approach is used by 

E. H. Wichmann in the manuscript of his forthcoming book in 
quantum field theory. 

(b) For (x—y) spacelike, 

[X(x),JC(y)]=0. (1.5) 

The necessity of (a) is rather obvious if we use (1.3) to 
rewrite (1.1) as 

oo (~i)n r 
S = E / dAxv • -d*xnT{W,(xi)' * -3C(ff»)}. (1.6) 

w-o n\ J 

But (a) is certainly not sufficient, because the 6 func
tions 6(xi— x3) implicit in the definition of the time-
ordered product are not scalars unless their argument is 
timelike or lightlike. Condition (b) guarantees that no 
6 ever appears with a spacelike argument. 

(3) Particle interpretation. We require that 3C(x) be 
constructed out of the creation and annihilation opera
tors for the free particles described by HQ. The only 
known way of making sure that such an 30, (x) will 
satisfy the restrictions 2(a) and 2(b), is to form it as a 
function of one or more fields ^w(x), which are linear 
combinations of the creation and annihilation operators, 
and which have the properties: 

(a) The fields transform according to 

^[A,a>»(*)D'-1CA,a3=E DJiA'^iAx+a), (1.7) 

where 2>nm[A] is some representation of A. 
(b) For (x—y) spacelike 

[$n(x)rfm(y)l±=0, (1.8) 

where [ ]± may be either a commutator or anticom-
mutator. Condition 3(a) enables us to satisfy 2(a) by 
coupling the if/n(x) in various invariant combinations, 
while 3(b) guarantees the validity of 2(b), provided 
that 3C(x) contains an even number of fermion field 
factors. (There are some fijne points about the case 
x=y which will be discussed in Sec. V.) 

Equations (1.7) and (1.8) will dictate how the fields 
are to be constructed. We have not pretended to derive 
these equations as inescapable consequences of assump
tions (l)-(3), but our discussion suggests strongly that 
they can be understood as necessary to the Lorentz 
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invariance of the S matrix, without any recourse to 
separate postulates of causality or analyticity.2 

Nowhere have we mentioned field equations or La-
grangians, for they will not be needed. In fact, our 
refusal to get enmeshed in the canonical formalism has 
a number of important physical (and pedagogical) 
advantages: 

(1) We are able to use a 2^+1-component field for a 
massive particle of spin j . This is often thought to be 
impossible, because such fields do not satisfy any free-
field equations (besides the Klein-Gordon equation). 
The absence of field equations is irrelevant in our ap
proach, because the fields do satisfy (1.7) and (1.8); a 
free-field equation is nothing but an invariant record of 
which components are superfluous. 

The 27+I-component fields are ideally suited to weak 
interaction theory, because they transform simply 
under T and CP but not under C or P. In order to 
discuss theories with parity conservation it is con
venient to use 2(2j+l)-component fields, like the Dirac 
field. These do obey field equations, which can be de
rived as incidental consequences of (1.7) and (1.8). 

(2) Schwinger3 has noticed a serious difficulty in the 
quantization of theories of spin j ^ f by the canonical 
method. This can be taken to imply either that particles 
with 7 ^ f cannot be elementary, or it might be inter
preted as a shortcoming of the Lagrangian approach. 

(3) Pauli's proof4 of the connection between spin and 
statistics is straightforward for integer j , but rather 
indirect for half-integer j . We take the particle inter
pretation of \pn(oc) as an assumption, and are able to 
show almost trivially that (1.8) makes sense only with 
the usual choice between commutation and anticom-
mutation relations. Crossing symmetry arises in the 
same way. 

(4) By avoiding the principle of least action, we are 
able to remain somewhat closer throughout our de
velopment of field theory to ideas of obvious physical 
significance. 

At any rate the ambiguity in choosing 3C(#) is no 
worse than for <£(#). The one place where the La
grangian approach does suggest a specific interaction 
is in the theory of massless particles like the photon and 
graviton. Our work in this paper will be restricted to 
massive particles, but we shall come back to this point 
in a later article. 

The transformation properties of states, creation and 
annihilation operators, and fields are reviewed in Sec. 
II. The 2y+l-component field is constructed in Sec. I l l 
so that it satisfies the transformation rule (1.7). The 
''causality" requirement (1.8) is invoked in Sec. IV, 
yielding the spin-statistics connection and crossing 

2 In this connection, it is very interesting that a Hamiltonian 
without particle creation and annihilation can yield a Lorentz-
invariant S matrix, but not if we use perturbation theory. See 
R. Fong and J. Sucher, University of Maryland (to be published). 

3 J. Schwinger, Phys. Rev. 130, 800 (1963). 
4 W. Pauli, Phys. Rev. 58, 716 (1940). 

TABLE I. The scalar matrix n(g) = (—)*>>!« •••ffMgM,- • • for 
spins y ^ 3 . In each case J is the usual 2j-j-l-dimensional matrix 
representation of the angular momentum. The propagator for a 
particle of spin j is S(q) — -~i(—itn)~*J'IL(q)/q2+tn2--ie. 

n<°>fe) = i 
nW(q)=q»-2((i>J) 

n^fe) = -^+2(q-J)(q-J-5 0 ) 
n<«»fa) = -g 2 (^ -2q . J)+i[(2q- J)2-q2][3^~2q- J] 

n^ ( ? ) = (- ?
2)2-2^(q.J)(q.J- ?o) 

+!(q-J)C(q-J)2-q2]Cq-J-2(?0] 
nOWfo) = ( - ^ ) 2 ( g o _ 2 q . J ) - ig 2 [ (2q . J ) 2 - q

2 ] [ 3 ^ - 2 q . J ] 
1 

+—C(2q .J ) 2 -q 2 ]C(2q . J ) 2 -9q 2 ] [5 ( ? o-2q-J ] 
120 

n<3>(<?) = (-qV+2(-q>) (q- J)(q- !-<?<>) 
- k 2 ( q - J ) C ( q - J ) 2 - q 2 ] C q - J - 2 ^ ] 

+ - ( q - J ) [ ( q - J ) 2 - q 2 X ( q - J ) 2 - 4 q 2 ] [ q - J - 3 g 0 ] 
45 

symmetry. Section V is devoted to a statement of the 
Feynman rules. The inversions T, C, and P are studied 
in Sec. VI. They suggest the use of a 2 (2y+^-com
ponent field whose propagator is calculated in Sec. VII. 
More general fields are considered briefly in Sec. VIII. 
The propagator for 2^+1- and 2 (2^+1) -component 
fields involves a set of matrices which transform like 
symmetric traceless tensors of rank 2j, and which form 
the natural generalizations of the 2X2 vector {<r,l} and 
the 4X4 vector 7,,, respectively. These matrices are 
discussed in two appendices, where we also derive the 
general formulas for a spin j propagator. The 2j+l 
X2j+1 propagators for spin j^3 are listed in Table I, 
and the 2(2/+l)X2(2/+l) propagators for j<Z2 are 
listed in Table II. 

This article treats a quantum field as a mere artifice 
to be used in the construction of an invariant S matrix. 
It is therefore not unlikely that most of the work pre
sented here could be translated into the language of 
pure 5-matrix theory, with unitarity replacing our 
assumptions (1) and (3). 

TABLE II. The scalar matrix (P(^)==-~^V1M2",/I2i^i?M2- * *2W 
for spins j^2.In each case 

°> i_o j«)_r 
The propagator for a particle of spin j is 

S(q) = -im~2>[G>(q)+m2>l/q2+m*-ie. 

(P<o)(g) = l 

( P « » ( « ) = ^ - 2 ( q ^ ) 7 ^ 

(Ptt) (?) = -ffi+2(q • g) (q-Sfi-tytf 

(P«»(?) = -8 s (« 0 /S -2q-^y^)+JC(2q .^ -q«X3 8 « iS-2q^7S8] 
<P(2)(?) = ( - ? W - 2 3

2 ( q ^ ) C q - ^ - « ° 7 6 / 3 ] 
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II. LORENTZ TRANSFORMATIONS 

In our noncanonical approach it is essential to begin 
with a description of the Lorentz transformation prop
erties of free-particle states, or equivalently, of creation 
and annihilation operators. The transformation rules 
are simple and unambiguous, and have been well 
understood for many years,5 but it will be useful to 
review them once again here. 

The proper homogeneous orthochronous Lorentz 
transformations are defined by 

x»—>A^", 

^A^A%=gX p , (2.1) 

detA=l; A°0>0. 

These will be referred to simply as "Lorentz transforma
tions' ' from now on. Our metric is 

gij^Sifj goo= — 1 ; gio=goi-0. (2.2) 

To each A there corresponds a unitary operator U£A], 
which acts on the Hilbert space of physical states, and 
has the group property 

J7CA,MAi]=^[A^i] . (2.3) 

Of particular importance for us is the "boost" X(p), 
which takes a particle of mass m from rest to mo
mentum p: 

i'/(p) = %+M[cosh0- -1 ] , 
Lio(p) = U>i(p)=§i sinhfl, (2.4) 

£oo(p) = cosh0. 

Here p is the unit vector p/1 p | , and 

sinh0 = | p | jm, cosh0=co/m = [p2+nfj^/m . (2.5) 

Strictly speaking, this should be called L(p/m). 
We can use L(p) to define the one-particle state of 

momentum p, mass m, spin j , and s-component of spin a 

I P,cr) = lmMp)Jim\:L(p)2\<r), (2.6) 

where \<r) is the state of the particle at rest with Jz=<r. 
Our normalization is conventional, 

<p,cr|pV) = ^ ( p - p O a ^ . (2.7) 

The effect of an arbitrary Lorentz transformation A", 
on these one-particle states is 

C/[A] | p,«r> = [»/«o(p)]1/2f/[A]f/[L(p)] | a) 
= CW/co(p)]1/2t/[L(Ap)]C/[L-i(Ap)AL(p)] | <r> 
= [W /co(p)]1 / 2E. '^[ i(Ap)]k ' ) 

XW\UlL-Kkv)kL(V)~]\<T), 
and finally 

tf[A]| p,(r) = [co(Ap)/W(p)]1/2 E . ' ! A p / ) 
XZW^ZrHApjALfo)].- (2.8) 

5 E. P. Wigner, Ann. Math. 40, 149 (1939). 

E I N B E R G 

The coefficients Dff>0
U) are 

^ , ( i ) f f l = ( ^ | £ / f f l k ) . (2.9) 

In (2.8), R is the pure rotation X-1(Ap)A£(p) (the 
so-called "Wigner rotation") so that DU)[lf] here is 
nothing but the familiar 2j+ 1-dimensional unitary 
matrix representation6 of the rotation group. 

A general state containing several free particles will 
transform like (2.8), with a factor |V/co]1/2Z) for each 
particle. These states can be built up by acting on the 
bare vacuum with creation operators #*(p,o*) which 
satisfy either the usual Bose or Fermi rules7: 

Ca(p,<r),a*(p',o/)lt«5^«8(p-p/), (2.10) 

so the general transformation law can be summarized 
by replacing (2.8) with 

= [co(Ap)/co(p)]^ £ , , JWa[£-1(Ap)AL(p)>*(Ap,<rO. 
(2.11) 

Taking the adjoint and using the unitarity of D^\JQ 
gives 

= [«(Ap)/«(p) J ^ ^ ^ ^ [ L ^ ( p ) A - ^ ( A p ) > ( A i v O . 
(2.12) 

It will be convenient to rewrite (2.11) in a form 
closer to that of (2.12). Note that the ordinary complex 
conjugate of the rotation-representation D is given by 
a unitary transformation8 

J9(i)[je]*=CZ?^[UTC-1, (2.13) 

where C is a 2 J + 1 X 2 J + 1 matrix with 

C*C=(-)2>'; C*C=1. (2.14) 

[With the usual phase conventions, C can be taken as 
the matrix 

C ^ = ( - ) ^ , , _ f f , 

but we won't need this here.] Since DU)[R~] is unitary, 
(2.13) can be written 

D^^lRl^iCD^ZR-^C-1}^ (2.15) 

so (2.11) becomes 

p C A y w i / i A ] 
= [a)(Ap)/a)(p)]1/2E^{CP^')[Z-1(p)A-1L(Ap)]C-1},(r, 

Xa*(Ap,cr'). (2.16) 

6 See, for example, M. E. Rose, Elementary Theory of Angular 
Momentum (John Wiley and Sons, Inc., New York, 1957), p. 48 ff. 

7 We use an asterisk to denote the adjoint of an operator on 
the physical Hilbert space, or the ordinary complex conjugate of 
a c number or a c-number matrix. A dagger is used to indicate the 
adjoint of a c-number matrix. Other possible statistics than 
allowed by (2.10) will not be considered here. 

s Reference 6, Eq. (4.22). 
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We speak of one particle as being the antiparticle 
of another if their masses and spins are equal, and all 
their charges, baryon numbers, etc., are opposite. We 
won't assume that every particle has an antiparticle, 
since this is a well-known consequence of field theory, 
which will be proved from our standpoint in Sec. IV. 
But if an antiparticle exists then its states will trans
form like those of the corresponding particle. In par
ticular, the operator &*(p,<r) which creates the anti
particle of the particle destroyed by a(p,(r) transforms 
by the same rule (2.16) as a*(p,o-): 

^CA]4*(p,cr)^CA] 
= [co(Ap)/o)(p)]1/2 Z ,, {CZ?(^[L-1(p)A-1L(Ap)]C-1} ^ 

X4*(Ap,*0. (2.17) 

To some extent this is a convention, but it has the ad
vantage of not forcing us to use different notation for 
purely neutral particles and for particles with distinct 
antiparticles. 

It cannot be stressed too strongly that the trans
formation rules (2.12) and (2.17) have nothing to do 
with representations of the homogeneous Lorentz group, 
but only involve the familiar representations of the 
ordinary rotation group. If a stranger asks how the spin 
states of a moving particle with j=l transform under 
some Lorentz transformation, it is not necessary to ask 
him whether he is thinking of a four-vector, a skew 
symmetric tensor, a self-dual skew symmetric tensor, 
or something else. One need only refer him to (2.16) or 
(2.8), and hope that he knows the j=l rotation 
matrices. 

The complexities of higher spin enter only when we 
try to use # (p,<r) and &*(p,<r) to construct a Held which 
transforms simply under the homogeneous Lorentz 
group. We will need to use only a little of the classic 
theory of the representations of this group, but it will 
be convenient to recall its vocabulary. Any representa
tion is specified by a representation of the infinitesimal 
Lorentz transformations. These are of the form 

A'^avfo) '*, , (2.18) 

where the co's form an infinitesimal " six-vector" 

«,»,= —«,M. (2.19) 

The corresponding unitary operators are of the form 

f/[l+co]=l+(i/2)/MVco^, (2.20) 

It is very convenient to group the six operators J\v into 
two Hermitian three-vectors 

Ki=JiQ——/ot. (2.23) 

It follows from (2.3) that 

[/<,//]=*€**/*, (2.24) 

[_JhK^ieijkKk, (2.25) 

[KitK^-UijkJt. (2.26) 

The J generate rotations and the K generate boosts. 
In particular, the unitary operator for the finite boost 
(2.4) is 

i7 [ i (p ) ]=exp( -^- IW) . (2.27) 

The commutation rules (2.24)-(2.26) can be de
coupled by defining a new pair of non-Hermitian 
generators: 

A=J[J+ iK] , (2.28) 

B = § [ J - * K ] , (2.29) 

with commutation rules 

AxA=iA, (2.30) 

B x B = i B , (2.31) 

[4<>By]=0. (2.32) 

The (2i4+l)(2B+l)-dimensional irreducible repre
sentation (A,B) is denned for any integer values of 
2A and IB by 

{a,b\k\a',b')=hv1aa-U), (2.33) 

{a,b\*W,b')=Ka-iw(B), (2.34) 

where a and b run by unit steps from —A to +A and 
from —B to +B, respectively, and JW) is the usual 
2/+l-dimensional representation of the rotation group: 

( / , ^ ± ^ ^ ) , v = 5 ^ „ ± 1 [ ( i = F ( 7 ) ( y ± ( r + l ) P , 
(J U)) , =8 , a * 

The representations (A,B) exhaust all finite dimen
sional irreducible representations of the homogeneous 
Lorentz group. None of them are unitary, except for 
(0,0). 

We will be particularly concerned with the simplest 
irreducible representations (j,0) and (0j), These are 
respectively characterized by 

J-»JW>, K - > - i J « > , for 0*,0) (2.36) 
and 

J->J<», K->+iJ«>, for (0J) , (2.37) 

where JU) is given as always by (2.35). We denote the 
2^+1-dimensional matrix representing a finite Lorentz 
transformation A by D(^[A] and 5 ( ? )[A] in the (jfi) 
and (0,y) representations, respectively. The two repre
sentations are related by 

J?^[A]=J5^[A-1].t. (2.38) 

In particular the boost L(p) is represented according to 
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(2.27) and (2.36) or (2.37) by 

£ 0 ) [ £ ( p ) ] = e x p ( - f J«>0), (2.39) 

£<>>[L(p)]=exp(+£- 3^6), (2.40) 

with sinh0= |p | /w. For pure rotations both Z>(j,)[i£] 
and DU)[R] reduce to the usual rotation matrices. 

III. 2/+1-COMPONENT FIELDS 

We want to form the free field by taking linear com
binations of creation and annihilation operators. The 
transformation property under translations required by 
(1.7) forces us to do this by setting the field equal to 
some sort of Fourier transform of these operators. But 
(2.12) and (2.17) show that each a(p,a) and 6*(p,o-) 
behaves under Lorentz transformations in a way that 
depends on the individual momentum p, so that the 
ordinary Fourier transform would not have a covariant 
character. In order to construct fields with simple 
transformation properties, it is necessary to extend 
D(j)£R~] to a representation of the homogeneous Lorentz 
group, so that the p-dependent factors in (2.12) and 
(2.17) can be grouped9 with the a(p,<r) and b*(p,a). 
There are as many ways of doing this as there are 
representations of the Lorentz group, but for the present 
we shall use the (jfi) representation defined by (2.36) 
and (2.35). [The (0,j) representation will be considered 
in Sec. VI, the (jfi)®(0J) in Sec. VII, and the general 
case in Sec. VIII.] 

Having extended the definition of the 2j-j-lX2j-\-l 
matrix Du) in this way, we can split the rotation matrix 
appearing in (2.12) and (2.17) into three factors 

D^">[L-1(p)A-1L(Ap)] 

= jOO-)-i[jL(p)p(y)[A-ipo-)[L(Ap)]. (3.1) 

This allows us to write (2.12) and (2.17) as9 

P [ A > ( P ^ ) P - 1 M = E . ^ ^ [ A ^ A p / ) , (3.2) 

^[A]^(p,cr)f/-1CA] = i : ^ P^(^CA-1]/3(Ap/), (3.3) 

with 

afaWMlW £ • D.Si>[L{V)Ta(p,S), (3.4) 

Mp,°)^LMv)Jl2i:AD<»lL(VnC-i}^b*(p,<T'). (3.5) 
The operators a and 0 transform simply, so the field 

can be constructed now by a Lorentz invariant Fourier 
transform 

d*p 
<pff(x) = ( 2 T T ) W 

2co(p) 

X[^(p ,o - )^ -+^(p , (7 )e -^ - ] , (3.6) 

with constants £ and rj to be determined in the next 

9 This step corresponds to Stapp's replacement of the S matrix 
by the "M-functions." See H. Stapp, Phys. Rev. 125, 2139 (1962) 
for y=J; and A. O. Barut, I. Muzinich, D. N. Williams, Phys. 
Rev. 130, 442 (1963) for general j . 

section. It is clear that this is the most general linear 
combination of the a's and the 6*'s which has the simple 
Lorentz transformation property 

= E^Z>^ ( ' ) [A- 1 ]MA*+a) . (3.7) 

[We choose to combine a and 6*, so that cpff(x) also 
behaves simply under gauge transformations.] 

In terms of the original creation and annihilation 
operators, the field is 

«v(x)=(2x)-3/2 
d*p 

+) ? {D^[L(p)]C- 1 }„^*(p/)e-^-] . (3.8) 

We have already derived a formula [Eq. (2.39)] for 
the wave function appearing in (3.8): 

-D^ ( y )Ci(p)]={exp(-^-JWfl)}^. 

The field obeys the Klein-Gordon equation 

(n2-m2)<pff(oc) = 0, (3.9) 

but it does not obey any other field equations. As dis
cussed in the introduction, we consider this to be a 
distinct advantage of the (jfi) representation, because 
any field equation [except (3.9)] is nothing but a con
fession that the fjeld contains superfluous components. 

If a particle has no antiparticle (including itself) 
then we have to set T? = 0 in (3.6) and (3.8). In the 
other extreme, a theory with full crossing symmetry 
would have 1t\ \ = \ £ \. We will now show that the choice 
of £ and rj is dictated by requirement (1.8), and hence 
essentially by the Lorentz invariance of the S matrix. 

IV. CROSSING AND STATISTICS 

We are assuming, on the basis of their particle in
terpretation, that the a's and 6's satisfy either the usual 
Bose commutation or Fermi anticommutation rules: 

[a(p,(7),^(p,(7 ,)]±=5(p-p /)^, 

[Kp^) ,&*(p/ ) ]±=5(p-p ' )5^ , 
(4.1) 

with all others vanishing. It is then easy to work out 
the commutation or anticommutation rule for the field 
denned by (3.8): 

/ n, 
(2wYJ 2co(p) 

,<W)(PMP» 
( 2 T ) V 2w(p) 

X{U| 2 expp/ . - (x -y) ]± | r , | 2 exp[ -^ - (x-3 ; ) ]} , 
(4.2) 
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where the matrix II (p) is given by 

m-2^n(p,a;) = P^CL(p)p^CL(p)] t (4.3) 

(4.4) 

FOR ANY S P I N 

The field is now in its final form: 

J3p 

B1323 

= exp(-2£-j0) 
[cosh0=p°/m=o) (p)/w]. 

This matrix is evaluated explicitly in the Appendix 
and given for j^3 in Table I. For our present purposes, 
the important point is that 

n„<r>{p)==(-Yha^-wpHpn- - -p^, (4.5) 

where t is a constant symmetric traceless tensor. It 
follows then from (4.2) that 

^ ( * H ( 2 7 r ) W - ^ 
J [2co 

X 
/ 

[2«(p)]w 

X Z [Z} r f('»[I(p)]a(p,,')e i r" 
a' 

+ {Z}^[L(p)]C-1}^&*(p,(7/)e-^-]. (4.11) 

The commutator or anticommutator is 

= i(-iM)-*%a>^''-wdvldM- • -dniA(x-y), (4.12) 

where A is the usual causal function 

-i r dzp 

2co(p) 
{UI2exp[i^.(x-3;)] 

± ( - ) 2 / M 2 expl-ip- (*~y)]} • (4.6) 

A(s) = -
— / " • 

[""^•(z—2/)— e— ip-(x— y)~\9 (4.13) 

It is well known4 that such an integral will vanish 
outside the light-cone if, and only if, the coefficients of 
expp^>- (%—y)~] and exp[— ip- {x—y)~\ are equal and 
opposite, i.e., 

l€' l2==F(-)a yhla . (4.7) 

(2T)V 2w(p) 

V. THE FEYNMAN RULES 

Suppose now that the interaction Hamiltonian is 
given as some invariant polynomial in the <pa(x) and 
their ad joints. For example, the only possible non-
derivative interaction among three particles of spin j \ , 
J2, and jz would be 

Thus the requirement of causality leads immediately 
to the two most important consequences of field theory: 

(a) Statistics: Eq. (4.7) makes sense only if 

=F(-)2 ' -=l, (4.8) 

so a particle with integer spin must be a boson, with a 
(—) sign in (4.1), while a particle with half-integer spin 
must be a fermion, with a (+) sign in (4.1).10 

/h h h\ 

(b) Crossing: Eq. (4.7) also requires that 

(4.9) 

Thus every particle must have an antiparticle (perhaps 
itself) which enters into interactions with equal coupling 
strength. There is no reason why we cannot redefine 
the phase of a(p,<r) and b*(p,a) and the phase and 
normalization of (pa(%) as we like, so Eq. (4.9) allows 
us to take 

3C(*) = * £ . 
^ " A c n (T2 or3/ 

X^ (1)W^ (2)W^ (3)W+H.c, (5.1) 

the 'Vertex function" being given here by the usual 
3j symbol. 

The S matrix can be calculated from (1.1) by using 
Wick's theorem as usual to derive the Feynman rules: 

(a) For each vertex include a factor (— i) times 
whatever coefficients appear with the fields in 3C(#). 
For example, each vertex arising from (5.1) will con
tribute a factor 

\ ) 
\0"i 0"2 <J%/ 

(5.2) 

without any loss of generality. 

(4.10) 

10 As a demonstration that the causality requirement cannot be 
satisfied with the wrong statistics, this is certainly inferior to the 
more modern proof of P. N. Burgoyne, Nuovo Cimento 8, 607 
(1958). Our purpose in this section is to show that causality can 
be satisfied, but only with the right statistics and with crossing 
symmetry. 

(b) For each internal line running from a vertex at 
x to a vertex at y include a propagator 

(T{<pff(x)<p^(y)})o=e(x-y)(<p„(x)<pff>i(y))o 

+ (-)*'0(y-x)(<pS(y)v.(x))o (5.3) 

(c) For an external line corresponding to a particle 
of spin j9 Jg=fi} and momentum p, include a wave 
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function 
1 

•Dfffi
U)[_L(v)'] exp(ip• x) [particle destroyed], 

[2CO(P)]I/2(2TT)3/2 

1 

[2co(p)]1/2(27r)3/2 

1 

[2co(p)]1/2(27r)3/2' 

1 

•DffM
0,)*[£(p)] exp(—ip-x) [particle created], 

[Z)°')[i>(p)]C~1]<rMexp(—ip-x) [antiparticle created], 

(5.4) 

[2CO(P)]I/2(2TT)3/2 
[ / ^ [ ^ ( p ^ C - 1 ] ^ * exp(ip-x) [antiparticle destroyed]. 

These wave functions can be calculated from Eq. where — iAc(x—y) is the usual spin-zero propagator: 
(2.39). In conjunction with (4.4), this tells us that . k „ , N ,nf N A , N , .„, N A , N 
v J J K J* -tAc(x) = td(x)A+(x)+i6(-x)A+(-x) 

D<t>tL(p)l=nr*mw(p'), (5.5) = ^A1(x)+ie(x)A(x)'] (5.9) 

where the 4-vector p' is defined to have 0' = 0/2, i.e., ' ' / \==n( \ _ Q ( - . ) 

pf={fchm(o>-m)Ji\&m{o>+in)y*}. (5.6) A i ( * ) s C M * ) + M - * ) ] , (5.10) 
The matrix U& is calculated in the Appendix; see also A(x)=A+(x) — A+(—x). 
Table I. 

(d) Integrate over all vertex positions x, y , etc. and Xt i s w d l k n o w n t h a t A*(*) k s c a l a r > b e c a u s e ,€<*) i s 

sum over all dummy indices a, </, etc. f a l a r u n l e s s * 1S spacelike, in which case A(*) = 0. 
(e) Supply a ( - ) sign for each fermion loop. U f n S t h e ^ n s o r transformation rule (A.5) for the 
The problem still remaining is to calculate the pro- ^ " ' ' ' w e find t h a t 

pagator (5.3). An elementary calculation using (4.11) JD^[A]5(»)Z) w ) [A] t =5(Aa; ) . (5.11) 
and (4.3) gives 

This is just the right behavior to guarantee a Lorentz-
(<po(%)<P<r>Hy))o invariant S matrix. 

/

73. But unfortunately the propagator (5.3) arising from 

Hff<r (p) expVip' (x—y)~\ Wick's theorem is not equal to the covariant propagator 
2co(p) S(x) defined by (5.8), except for j=0 and i = | . The 

(<p<r'+(;y) <£>*(#) )o trouble is tha t the derivatives in (5.8) act on the e 
function in Ac(x) as well as on the functions A and Ai. 

= (2TT)-*M-V[-^-I1 ,(4>)exDr-i1>-(x-v)l T h i § g i v 6 S r i s e t 0 6 X t r a t e r m S P r o P o r t i o n a l t o e c l u a l -
J 2co(p) ff<T ^ m e ^ functions and their derivatives. These extra 

terms are not covariant by themselves, bu t are needed 
Formula (4.5) for I I 0 ) lets us write this as t o m a ;k e S(x) covariant; we must conclude then tha t 

(5.3) is not covariant. 
(<P*(x)<P^(y))o For example, for spin 1 Eq. (5.3) gives 

- i ( - * i i ) ^ ^ « " - « ^ . . . a ^ ( x - y ) , (5.7) < r { f , # W ^ t ( y ) ) > o a B j f t i r t ^ 
(-)H<pS(y)<P.(*))t> XldlidvAi(x-y)+ie(x-y)dfidvA^-y)l, 
where 

iA+(x) = 

while (5.8) gives 

1 r &p Saa>(x—y) = %imrH<riT>iiVdfXdv 1 f d6p ^>a<j'\^ y) — 2l/rr(/ **<*' ^n^v 
—— ——exp(ip'x). XlAi(x-y)+U(x-y)A(x-y)]. 
(27r)V 2co(p) 

The difference can be readily calculated by using the 
At this point we encounter an infamous difficulty. famjiiar properties of A (a). We find that 

If the 6 function in (5.3) could be commuted past the 
derivatives in (5.7), then the propagator (5.3) would be ( r{^ (x )^ f ( j )} )o 
S^,-y) = -i(-imy«t^-~ =S„(,-y)-2«W(*-y), (5.12) 

XdM1d/z2- • •5M2/A
C(^—y), (5.8) and the second term is definitely not covariant in the 
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sense of Eq. (5.11). [This problem does not arise for spin 
0, where there are no derivatives, nor for spin §, where 
there is just one derivative and the extra term is pro
portional to 

t"A(x-y)dfle(x-y) = 2t0A(x-y)d(x0-y°) = 0. 

But it does occur for any j ^ 1.] 
This problem has nothing to do with our noncanonical 

approach or our use of 2j+l-component fields. For ex
ample, in the conventional theory of spin 1 (using the 
four-component (J,J) representation) the propagator is 

(T{A,(x)Ap(y)})o 
= ~ {i/2)l{g,v-m-"dildv)Ll{x~y) 

+ie(x-y)(gfiy-m~2dtidv)A(x-y)2 
= -i(g»v-m-2dtxdv)A

c(x-y)-2m-%%08*(x--y); 

so here also there appears a noncovariant term like 
that in (5.12). The general reason why the S matrix 
turns out to be noncovariant is that condition (1.5) is 
not really satisfied by an interaction like (5.1) if any of 
the spins are higher than ^, because the commutators 
(4.12) of such fields are too singular at the apex of the 
light cone. 

The cure is well known. We must add noncovariant 
"contact" terms to 30(x) in such a way as to cancel out 
the noncovariant terms in the propagator. If we used a 
Lagrangian formalism, then such noncovariant contact 
terms would be generated automatically in the transi
tion from £(x) to 30 (x), although the proof11 of this 
general Matthews theorem is very complicated. For 
our purposes it is only necessary to remark that we take 
the invariance of the 6* matrix as a postulate and not a 
theorem, so that we have no choice but to add contact 
terms to 30, (x) which will just cancel the noncovariant 
parts of the propagator, such as the second term in 
(5.12). 

In summary, we are to construct the S matrix ac
cording to the Feynman rules (a)-(e), but with the 
slight modifications: 

(a') Pay no attention to the noncovariant contact 
interactions; compute the vertex factors using only the 
original covariant part of 30 (x). 

(b') Do not use (5.3) for internal lines; instead use 

This is the field that we would have constructed in
stead of <p<r{x) had we chosen to represent the "boost" 
generators by 

K«> = +iJ«> (2.37) 

instead of Eq. (2.36). The field X„(x) transforms under 

11 See, for example, H. Umezawa, Quantum Field Theory (North-
Holland Publishing Company, Amsterdam, 1956), Chap. X. 

the covariant propagator 

S„> (x-y) = -i(-im)-2%af^
2'• •*" 

Xd^d^-'d^A^x-y). (5-8) 

Similar modifications are required when 30, (x) includes 
derivative interactions. 

The Feynman rules could also be stated in momentum 
space. The propagator (5.8) would then become 

Sc«>(q)= d^e-^^S^ix) 

= -i(-m)-2m^(q)/q2+m2-ie. (5.13) 

The monomials 11(g) are calculated in the Appendix, 
and presented explicitly for y ^ 3 in Table I. 

VI. T, C, AND P 

The effect of time-reversal (T), charge-conjunction 
(C), and space-inversion (P) on the free-particle states 
is well known. It can be summarized by specifying the 
transformation properties of the annihilation operators: 

T«(p,a)T-»-= 

T*(p,<or-»= 
Ca(p,ff)C-x= 

C&ivriCr1' 
Pa(p,(7)P-i= 

PJ(p,<0r-x= 

~VT ZLO' C<r<j>&\ 

= r]TYi<r' C<ra>b{ 

^cbfao), 

= rjca(p,cr), 

= ypd(-p, a), 

= ? P * ( - P , * ) . 

The rj's and r?'s are phase factors12 representing a degree 
of freedom in the definition of these inversions. The 
operator T is antiunitary, while C and P are unitary. 
The matrix Ca^ was defined in Sec. II, and has the 
properties 

C J ^ C - ^ - J ^ * , (6.7) 

C*C=(-)2'*; ac=l (6.8) 

where Ju) are the usual 2j+l- dimensional angular-
momentum matrices. 

In order to describe the effect that C and P have on 
the field <pv(#), it will be necessary to introduce a 
second 2^+1-component field: 

the (0 j ) representation of the Lorentz group: 

£/[A]X<r(x)Z7-1[A]=i;ff' J & ^ C A - ^ C A * ) , (6.10) 

i5^[A]s=Z)0->t[A-^, (6.11) 

12 For a general discussion of these phases, see G. Feinberg and 
S. Weinberg, Nuovo Cimento 14, 571 (1959). The discussion there 
was limited to (0,0), (J,J), and (J,0)©(0,}) fields, but can be 
easily adapted to the general case. 

J [2w(p)11 / 2 c L <,' J 
(6.9) 
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the matrix D appearing instead of D because we use 
(2.40) instead of (2.39). Like <p9(x), the field X9(x) 
obeys the Klein-Gordon equation (and no other field 
equation) and commutes with its adjoint outside the 
light-cone. It also has causal commutation relations 
with <p<r(x), but only because of our choice of the sign 
(-YHnEq. (6.9). 

The effect of T, C, and P on <p„(x) and Xa(x) can be 
readily calculated by use of the formula: 

D^lL{V)J=CD^iL{-V)-]C-K (6.12) 

We find that: 

T<P9(X)T+=IIT X> C , ^ ( x , - * ° ) , (6.13) 

T x ^ T - 1 - ^ £ , , C„,X,,(x, - * ° ) , (6.14) 

Cv.(x)€rl=r,c X> C^xSfr), (6.15) 

Cx,(x)Cr*=i,c(-Y*Z* C , * - W ( * ) , (6.16) 

P ^ P - ^ P X ^ - X , cfi), (6.17) 

P x ^ P - ^ p ^ - x , **), (6.18) 

provided that the antiparticle inversion phases are 
chosen as 

fjT=riT*', yc==yc*; yp=riP*(—)2>. (6.19) 

Any other choice of the rj would result in the creation 
and annihilation parts of <pff and Xff transforming with 
different phases, destroying the possibility of simple 
transformation laws.13 

If a particle is its own antiparticle then we call it 
"purely neutral," and set 

a(p,<r) = *(p,<0. (6.20) 

In this special case the (j 0) and (0 j) fields are related 
by 

X,t(*) = 2 > C ^ « v ( t f ) , (6.21) 

* / (* )= ( - ) 2 y I > £„>*•(*). (6.22) 

The fields are not Hermitian, except of course for j = 0. 
Nevertheless, Eq. (6.20) requires the phases rji to be 
equal to the corresponding m, and (6.19) then implies 
that these phases can only take the real values ± 1 , 
except that TJP must be ± i for purely neutral fermions. 

We see that the fields <pa{x) and Xa(x) transform 
separately under T, and also under the combined 
operation CP: 

C P ^ ( * ) P ^ < H = I W P 2 > C „ / - W ( - x , *?), (6.23) 

C P x ^ P ^ C - 1 

= w ( ~ ) 2 y 2 > C - X ^ - x , x"). (6.24) 

[Under CPT the transformation law is just that of a 
18 An important consequence is that a particle-antiparticle pair 

has intrinsic parity 
V7P=(-)2/> 

a well-known result that would be inexplicable on the basis of 
nonrelativistic quantum mechanics, 

spinless field: 

CPTcprWT-^C-^cvpVTcPrH-x), (6.25) 

CPTx< r(x)T-1P-1C-1=^^P97 r(-)^X t(-^), (6.26) 

permitting a great simplification in the proof of the 
CPT theorem.] The use of 2j+ 1-component fields 
(either <pa or Xa) for massive particles as well as for 
neutrinos would seem very appropriate in theories of 
the weak interactions, where CP and T are conserved 
but C and P are not. 

VII. 2(2/+l)-COMPONENT FIELDS 

Any parity-conserving interaction must involve both 
the (j,0) field (p<r(x) and the (Q,j) field Xa(x). It is 
therefore convenient to unite these two (2^+1)-
component fields into a single 2 (2^+1) -component 
field: 

* ( ; X) = \ (7.1) 

This field transforms according to the (i,0)©(0j) 
representation, i.e., 

UlAy,a(x)U-1ZA'] = 'Zfi toafiML^MAx), (7.2) 

where 
•Z)W[A] 0 

- 0 £<>">[A]-
SD<»[A> J- (7.3) 

the representations Du) and Du) being defined by 
(2.36) and (2.37) respectively. The representation £><'"> 
can be defined also by specifying that the generators 
of rotations are to be represented by 

r 0 J<a-i 
3(H , (7.4) 

L 0 J<»J 

and that the generators of boosts are represented by 

ft^-mSP, (7.5) 
where 75 is the 2(2j+l)-dimensional matrix: 

75= c _a- (7.6) 

This satisfies (2.24)-(2.26) because 7s2=l. 
The (y,0) © (0,j) representation (7.3) differs from the 

(.7,0) and (0,j) representations in the important re
spect that 3^ is equivalent to D - 1: 

a)0)[A]t=;83)«)[A-il8, (7.7) 
where 

-0 1-
(7.8) >-l o ] ; ^ 

£See Eq. (6.11) J This has the consequence that 
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where \p is the covariant adjoint 

$(x)=yp(x)p. (7.10) 

The T, C, and P transformation properties of \l/a(x) 
can be read off immediately from (6.13)-(6.18): 

flc<2rlf$\l/*(%) (bosons), 

y)c&~lyM*{%) (fermions' 
P^(^)P-1=77p^(-x,a;0), 

where U{q) and n({) are defined by (A. 10) and (A.41). 
In the 2 (2j+1)-dimensional matrix notation this reads 

with 

e= r l 
Lo cJ 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

[ y i w - w ^ A , , . • •3M,+OT2^(x) = 0, (7.19) 

where the generalized y matrices, ynm---^ are denned by 

J W - M i (7.20) 

A purely neutral particle will have a field which satisfies 
the reality condition 

e-W(aO (bosons) 

e~175/3^*(^) (fermions). 

Its inversion phases rjr, yc, VP must be real, except that 
rjp=zti for purely neutral fermions. 

The field \[/(x) of course satisfies the Klein-Gordon 
equation 

( • 2 -m 2 ) ^ ( t f )=0 . (7<16) 

But \f/(x) has twice as many components as the opera
tors a(p,cr) and &*(p,o-), so it has a chance of also satis
fying some other homogeneous field equation. In fact, 
it does. Using (A.12) and (A.40), we can easily show 
that the (jfi) and (0J) fields are related by 

Il(-id)(p(x)=m^x(x), (7.17) 

n(-id)x(*) = m2V(x), (7.18) 

and are discussed and evaluated in Appendix B. 
The field \f/ obviously obeys causal commutation re

lations, since <p and x commute with both $ and x+ 

at spacelike separations. Its homogeneous Green's 
functions are 

^a(x)h(y))o=(2T)-'m-^ 

<fo(y)*«(*)>o= (2*)-*™-^ 

-Mafi(p) 
2co(p) 

Xexp{#-(*-?) ) , (7.21) 

rf8p 

2co(p) 

Xexp{ip-(y-x)}, (7.22) 

where 

N(p) -[. 

Ln(^) m2> J 

(-m)2> n(^) 

(7.23) 

i(^) (-w)2*' 

The "raw" propagator is then 

]= (_ )2 / j | f ( - f ) . (7.24) 

< r { ^ ( * ) ^ ( y ) } > 0 ^ ^ 

/

d3p 
L0(%-y)Map(-id) exp{#- («-y)}+tf(y-*)Jf«/i(-») exp{#- (y -* )} ] . (7.25) 

2o>(p) 

As discussed in Sec. V, this is not the covariant propagator to be used in conjunction with the Feynman rules. We 
must add certain noncovariant contact terms to (7.25) which allow us to move the derivatives in M(—id) to the 
left of the 0 functions. The true propagator is 

S^{x-y)={2Tr)~zm-2m{ 
J 

d3p 

2co(p) 
[6(x—y) exp{ip- (x—y)}+0(y—x) exp{ip- (y—x)}~] 

-im-^Mafi(-id)Ac(x-y), (7.26) 

where Ac(x) is the invariant j=0 propagator (5.9). In momentum space we replace dM by iq^ so that 
This can be written in a more familiar form by using 
(B.13); we find that S(q) = -iw-2C(P(g)+w20/52+w2~i€, 

S(x) = imr^ly^--'^dtlld^ • -dMi-m*f]6P(%). (7.33) 

It is easy to see from (B.4) that this has the correct 
transformation property: 

where 
<?($) = - * V 1 M ' " W ? « ? M - ' - W 

General formulas for (P(g) are given in Appendix B; 
the results for j^2 are in Table 2. The wave functions 
for creation and annihilation of particles and anti-
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particles can be read off from (7.1), (4.11), and (6.9), 
or alternatively found from the solutions of (7.19). 
This whole formalism reduces to the Dirac theory for 

i=i 
VIII. GENERAL FIELDS 

We started in Sec. I l l by introducing a field <p(x) 
which transforms according to the (jfi) representation. 
Then, in order to discuss parity conserving theories, 
we introduced the (OJ) field %(%) in Sec. VI and used 
it in Sec. VII to construct a field \p(%) which transforms 
under the (reducible) representation (jfi)® (OJ). These 
particular fields have the advantage of depending very 
simply and explicitly on the particular value of j , but 
<p, x, and \j/ are certainly not otherwise unique. In fact, 
the usual tensor representation of a field with integer j 
is (J/2J/2), while the Rarita-Schwinger representation 
for half-integer j is based on the (2j+l)2-dimensional 
reducible representation: 

/2j-l 2j-l\ 
C(i,o)e(o,|)]®^-^,-^J. 

Our simpler fields agree with these conventional repre
sentations only for the case j=\. 

We now consider the general case. Let Dnm£A] be 
any representation (perhaps reducible) of the Lorentz 
group. Assume that when A is restricted to be a rota
tion R, the representation D£R] contains a particular 
component D(j)£R~]. By this we mean that there must 
be a rotation basis of vectors #w(cr), such that 

£ m D j * > . ( ( r ) = E , ^ (c rOZW'TO • (8.1) 

We can form an operator an(p) analogous to (3.4): 

a»(p) = IMP)!12 E«n DnnZL(V)2um(a)a(p,<T) (8.2) 

which transforms simply: 

c7[A]an(p)l7-i[A] = E-^«m[A-1>m(Ap). (8.3) 

[TJse (8.1) and (2.12) J For the antiparticles we can use 
another basis tw(o"), which in general may or may not 
be the same as the um(a), but which must also satisfy 

Zm Z>«JXM<r) = 2 > VnGrOZWapG• (8.4) 

The operator 0n(p) analogous to (3.5) is now formed as 

0„(p) = [ > ( p ) : p £ X»„m[L(p)] 
<r,erf ,m 

X t a O C ^ - V f o , * ) , (8.5) 

Using (8.4) and (2.17), we see that it transforms just 
like an(p): 

^CA]/?n(p)f7-1[A]=Em^nW[A-1]^(Ap). (8.6) 

The field is constructed as the invariant Fourier 
transform 

/

dzp 
[a»(pyp-*+j8»(p)£T^-],- (8.7) 

2co(p) 

or going back to a and 6* 

+vn(p,<r)V>fatr)<r**'*'], (8.8) 

where the "wave functions" in (8.8) are 

un(v,a) = (27r)-3/f2W(p)]-1/2 E 0*»[£(p)IM<r) > (8-9) 

m 

mt(r
f 

X i t ^ r 1 . (8.10) 
This field transforms correctly 

It obeys the Klein-Gordon equation, and may or may 
not obey other field equations as well. The causality 
condition (1.8) can be satisfied if we choose 

E«r un(v)un?(<j) = Y<* *>n(cr)zw*((r) , (8.12) 

and if we use the usual connection between spin and 
statistics. We will not pursue these matters further here. 

The chief point to be learned from this general con
struction is that the wave functions (8.9), (8.10) which 
enter into the Feynman rules are always determined by 
the matrices Dnm£L(p)2 representing a boost. 
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APPENDIX A: SPINOR CALCULUS FOR ANY SPIN 

Everyone knows that the three Pauli matrices to
gether with the 2X2 unit matrix make up a four 
vector /": 

t^<r; N l (Al) 
in the sense that 

pa/2)[A>D(i/2)[A]t=:A/f. (A2) 

Here A is a general proper homogeneous Lorentz trans
formation, and D(1/2)[A] is the corresponding 2X2 
matrix in the (|,0) representation, defined by repre
senting the generators of infinitesimal transformations 
as 

1 i 
J = - a K-—<r. (A3) 

2 2 
This famous construction of the vector #* is the basis 
of the familiar spinor calculus, which can also be em
ployed in a rather cumbrous fashion to discuss spins 
higher than | . 

We shall instead show here that this construction 
of a vector out of two-dimensional matrices can be 
directly generalized to the construction of a tensor of 
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rank 2j out of 2j+l-dimensional matrices.14 We shall 
also show that the commutator and propagator of a 
(2j +1)-component field of spin j are proportional to 
this tensor. 

We first prove that for any integral or half-integral j 
there exists a set of quantities 

V*i,/*2, • • • , M3/=0, 1, 2, 3 / 

with the properties: 

(a) t is symmetric in all ju's. 

(b) t is traceless in all ju's, i.e., 

^ W ^ ^ 2 ' - ' ^ = 0 . (A4) 

(c) t is a tensor, in the sense that 

=A„1"
1A„/2- • -AV2iwt"1''*~"'*i, (AS) 

where Z>W)[]A3 is the 2j+l-dimensional matrix corre
sponding to A in the (y,0) representation. £These 
D(j)£A~] are the same as used in the text, and are 
denned by Eqs. (2.36) and (2.35). Ordinary matrix 
multiplication is understood on the left-hand side of 
(A5). Eq. (A5) reduces to (A2) for i = | . ] 

Existence Proof: 
Let u9 be a 2j+ 1-dimensional basis transforming 

according to the (jfl) representation of the Lorentz 
group, i.e., 

^ ^ E ^ Z W ^ I X K ' . (A6) 
The quantities uaur* evidently furnish a (2/+1)2-
dimensional representation, the direct product of the 
(jO) representation with its complex conjugate. But 
this is 

(i,0)®(0,j) = (i,j) (A7) 

so the quantities uauT* transform under the (j9j) 
representation. The (jj) representation consists of all 
symmetric traceless tensors of rank 2j, so it must be 
possible to form such a tensor basis by taking linear 
combinations of the uauT*, i.e., 

2>IMJ. • -M(U) = jrvT kT«M- • -mu9u* (A8) 

in such a way that the transformation (A6) gives 

7>i/«-• -m(u) _> A^A, / 2 - • -A^WT^'-^iu). (A9) 

But this requires that the t coefficients must satisfy 
Eq. (A5). They must also be symmetric and traceless 
with respect to the /*»-, because T(u) is symmetric and 
traceless for all u. Q.E.D. 

Having proved the existence of the t% we must now 
establish a formula which will allow us to calculate 
them, and which will also provide a connection with the 
Green's functions of field theory. For any four-vector q, 

14 These are a special case of the matrices constructed by Barut, 
Muzinich, and Williams, Ref. 4, by induction from the j = J case. 
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we define a scalar matrix 

l W » f e ) s ( ~ ) 2 V ^ 2 - ^ ^ 2 - • •«„,. (A10) 

We will prove that if q is in the forward light-cone, 

g 2 = _ w 2 . ^ 0 > 0 ? (AH) 

then 

ILW(q) =M^V^[L(q)J = niVexp(-2dq- J<>">) (A12) 

where 

. * = q / | q | ' (A13) 
sinh0= | q\/m, 

and JU) is the usual 2j+ 1-dimensional representation 
of the angular momentum. £The constant factor in 
(A12) is of course arbitrary, but is chosen here so that 
the normalization of t will be as simple as possible.] 

Proof of (A12): 

The transformation law (A5) implies that 

Z)^[A]n^(«)Z)^ t[>]=n^(Ag). (A14) 

Let us fix q to have the rest-value q=q(m), where 

q°(m) = m'y q(w) = 0. (A15) 

(a) If A is a rotation then Z)(y)[Aj| is the unitary 
matrix 

Z)(i)[A]=exp(ie- J O ) , (A16) 

where J(y) is the usual 2j+ 1-dimensional representa
tion of the angular momentum vector J. The vector 
(A15) is rotation-invariant, so (A14) gives 

[ j w n « f e ( » ) ) ] = 0 . (A17) 

But the three matrices J 0 ) are irreducible, so Schur's 
Lemma tells us that Uu)(q(m)) must be proportional 
to the unit matrix. We will fix its normalization so that 

n„'<»(g(w)) = m^b^, (A18) 
and therefore 

W 0 0 - ° = 8 ^ . (A19) 

Equation (A14) therefore gives 

n^(Ag(w)) = w2^^[A]2)0+[A]. (A20) 

(b) If A is the "boost" i (p) defined by Eq. (2.4), 
then DU)[_A] is the Hermitian matrix 

Z)«)[Z(p)] = e x p ( - ^ - J<») (A21) 
and 

L(p)q(m) = p. (A22) 

Formula (A12) now follows immediately. 
The exponential in (A12) may be calculated as a 

polynomial of order 2j in the matrix 

ss2($-J<a). (A23) 

Recall that z is an Hermitian matrix with integer eigen
values 2j\ 2j—2, • • •, —2j, and that therefore 

(z-2j)(z-2j+2). • • (z+2j)=0. (A24) 
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This can be rewritten to give z^1 as a polynomial of Setting this equal to —1% then gives (Al). 
order 2j in z. It follows then that IL^iq) must itself _, . . . . A , , . . , ' . 
be such a polynomial, since all powers of z beyond the T°/° ^ U g t h l* *f£ o« e x t e r n for general j 
2jth in the Taylor series for the exponential can be w o u*d b e , t e d l 0 U S a n d difficult We shall approach the 
reduced to polynomials in z of order 2j. VvoUe™ o f f P ^ e n t m 8 e? p . ( ~ 2 ^ a s a P o l ^ o m i a l m * 

For example, in the case of spin j=J, Eq. (A24) m o r e d i r e c t 1 ^ F i r s t s P k t lt m t 0 e v e n a n d o d d Parts> 
gives, 2i2=l, so that exp(-fe) = coshte-sinhte. (A26) 

exp(—*0) = 1 —z0+i#2—|20H = cosh0—2sinh0. We consider separately the cases of j integer and 
half-integer. 

Then (A12) gives 

9 - 2 ( 0 - J ^ ) 
= g°-2(q. J^2>). (A25) matrix a=2(£- J) are even integers. If follows that15 

1. Integer Spin 
nd/2)(g) = m[cosh<9-2($.J<1/2))sinhfl T h e eigenvalues 2j, 2j-2, etc., of the Hermitian 

o-i 02(s2-22)(s2-42)• • • ( s 2 - (2^)2) 
coshz0 = 1 + L sinh2w+20, (A27) 

n=0 (2^+2) ! 

i-i (22-22)(s2-42)- • -(z2-(2n)2) 
sinhs0=z cosh0 E sinh2n+10. (A28) 

n=o (2»+l)! 

Using (A26) and (A12) gives for all q: 

WHq)= ( - ^ y + E ( " g 2 ) J ' *(2q. J)[(2q. J ) 2 - (2q)2][(2q. J ) 2 - (4q)2]- • • 
n=0 (2^+2) ! 

X[(2q .J ) 2 - (2^q) 2 ] [2q .J - (2^+2)^] (A29) 

or 

U^(q)= ( - g 2 K + — ^ - ( 2 q - J)[2q. J - 2 ^ ] + - ^ - ^ ( 2 q . J)[(2q. J ) 2 - (2q)2][2q. J-4</>] 
21 41 

' {~q2)3 - \2q.J)C(2q.J)2^(2q)2]C(2q.J)2-(4q)2]C2q.J-6^]+.-. (A30) 
6! 

The series (A30) cuts itself off automatically after j+1 terms. The terms we have listed are sufficient to calculate 
n for j = o, 1,2,3; the results are in Table I. 

2. Half-Integer Spin 

The eigenvalues 2j, 2j—2, etc., of s=2($- J) are now odd integers. It follows that15 

r i-i/2 (s2-12)(s2-32)• • • (2 2- (2n-1)2) I 
coshz0= cosh0 1+ E sinh2^ , (A31) 

L «-i (2»).I J 

r i-1/2 (s2-12) (s2-32) • • • (z 2- (2n-1)2) 1 
sinh^= z sinh0 1+ £ • sinh2w0 . (A32) 

L «-i (2»+l)! J 

Using (A26) and (A12) now gives: 

j-Ut (—g2)f-«-l/2 

n o - ) ( g ) = ( - g 2 ) ^ / 2 [ ^ 2 q . J ] + L — — — 7 -
«-i (2«+l)l 

X[(2q. J)2-q2][(2q. J)2-(3q)2] . • .[(2q. J) 2~([2^1]q) 2 ]C(2^+l) 3
0~2q. J ] , (A33) 

18 For (A27) and (A31) see, for example, H. B. Dwight, Table of Integrals and Other Mathematical Data (The Macmillan Company, 
New York, 1961), fourth edition, formulas 403.11 and 403.13, respectively. Equations (A28) and (A32) can be checked by 
differentiating with respect to 0; we get (A27) and (A31). I would like to thank C. Zemach for suggesting the existence of such ex
pressions and a method of deriving them. 
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or 
1 

nO)( 9)=(-g2)^/2[g0-2q.J]+-(-g 2)^ 8 / 2C(2q.J) 2-q 2][35°-2q.J] 
3! 

+-(-<Z2)>-6/2[(2q- J)2-q2][(2q- J ) 2 - (3q)«][5j»-2q. J ] + • • •. (A34) 

The series (A34) cuts itself off after j+% terms. The It follows immediately from (A12) and (A40) that 

S S ^ « K ; ? r t 0 C a l C U , a t e I I t e y " * , l , f ; no>(?)no->(?)=no)(,)no>(9)=(-^. (A46) 
Having calculated U(q), the coefficients *««••• may Substitution of (A10) and (A41) into (A46) gives 

be determined by inspection. For example, in the case 
j=l, Eq. (A30) gives / « » - W | I ' » - ' M J W S H . • -qMjqnqn- • -qnj 

n«>(g) = - ?
2 + 2 ( q . J ) ( q . J - 9 o ) . (A35) - ^ " ^ " ' ' ^ " • M * * - * * ^ ^ 

Setting this equal to t^q^v gives . , . , , , . , . 
Since this holds true for any q, we can use it to derive 

tm= 1 formulas for any symmetrized product of t and i. For 
^==tioz=z+Ji (A36) j = J : 

tij= {jhJi)-.bij, Krt'+W]=lllH'+l'P>3= -** ' . (A48) 

Observe that this is traceless, because APPENDIX B: DIRAC MATRICES FOR ANY SPIN 

/ / = [ 2 J 2 - 3 ] - l = 2(J 2-2) = 0. (A37) We will use the 2j+ 1-dimensional matrices 0""", 
We won't bother extracting the f - for j>l, because &"" discussed in Appendix A to construct a set of 
it is n (q) that we really need to know. 2 (2J+1)-dimensional matrices: 

We could have gone through this whole analysis using Q ,M1/I2.. .M2/_ 
the (OJ) instead of the (jfi) representation in (A5). yxiM2.--/*2/==_-M I (Bl) 
In that case we should have defined a symmetric trace- IJ/*I/*»---M2/ 0 J 
less object #*«**•• - ^ which is a tensor in the sense that 
- - T1 °1 

Z)(i)[A>iw...wD(i)[Aj 75^ , (B2) 
= A ^ A , / 2 - • •A^wJ'1'1, *"»', (A38) L 0 ~~1J 

where JD0)[A] is the matrix corresponding to A in the R=[^ *1 fRVl 
(0,y) representation: Ll 0J 

5^)rA]=Z>(^rA-1l t (A39) 
Their properties follow immediately from the work of 

The fundamental formula (A12) would then read Appendix A. 

1. Lorentz Transformations H « (q) = w2^[Z,(q)]2= fnVD^[L(- q)]2 

= m**exp(2$4-JW), (A40) 
where It follows from (A5), (A38), and (A39) that the y's 

n 0 ) (q) = (—)2faw - -Mqnqn • • • qm. (A41) a r e tensors, in the sense that 
Hence 

{»W • '1X22= (-fc.)/Ml/*2- • -/IS/ f (A42) 
=A^A, / 2 - • • A^'V11 '2* *-"2/, (B4) 

the sign being + 1 or — 1 according to whether the /*'s 
contain altogether an even or an odd number of space- w h e r e ®U) i s t h e Ufi)® (OJ) representation 
like indices. There is another relation between barred r / ^ T A l 0 
and unbarred matrices which follows from (6.7): SD^TAlJ (B5) 

IL(»(q)* = CIL(»(q)C-\ (A43) ^ ° ^ M - l 
a n d s o . ^ Obviously 75 is a scalar 

^IM2 • • • w * = Q/UM2 •. • mQ-x. (A44) 
3}('')rAl753}(>,)-irA] = 75 (B6) 

Equation (A44) in conjunction with (A42) yields the ' 
reality condition but 0 is not, because 

/««...«/*= ( ± ) c p « - w / c - i , (A45) j8=-^-2iyOo...of ^ 7 ) 
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2. Symmetry and Tracelessness 

The t and i are symmetric and traceless in the ju in
dices, so 7 is also: 

7MIM..-M/=7M'M'.. .W' (any permutation), (B8) 

gMlw7w|,i '-' | ,1 '=0. (B9) 

3. Algebra 

I have not studied the algebra generated by these y 
matrices in detail, but there is one simple relation that 
can be derived very easily. It follows from (A47) that 
for any q: 

7 ^ . . . ^ W . . . - y H . . .q„Anqn. . .g , f /= (<f)*i. (BIO) 

Cancellation of the q's gives the symmetrized product 
of two y's as a symmetrized product of g^v. For example, 
it follows from (BIO) that 

j=h {7^,7"} = 2 ^ , (Bll) 

j= 1: {y^X*} + {T^,7px} + {7M\7P"} 
= 2 [ g ^ x + r p r x + r Y p ] , (B12) 

and so on. 

4. Evaluation 

Comparison with (A10) and (A41) shows that 

r o n(g)n 
Lfl(g) 0 J 

The matrix n(g) was evaluated in Appendix A, and 
U(q) is just 

11(g) = n(-q,gO). (B14) 

It follows that we can calculate (P(q) from the formulae 
(A29) and (A33) for n(g), by making the substitution 

rJ<>> 0 -| 
J ^ - > S 0 ) 7 5 , where 3<fl= (BIS) 

L 0 J ^J 
and then multiplying the whole resulting formula on 
the right by /?. We find that for integer j : 
(?(»(q)=(-q*yp 

;-i (-q*y~l-n 

+ E — (2q-3)[(2q.S)2-(2q)2] 

w==o (2^+2)! 

X[(2q.S)2-(4q)2]. • -[(2q.3)2- (2^q)2] 

X[2q-S/3-(2^+2)g°75/3], (B16) 

(B13) 

and for half-integer j : 

<?U)(q) = (-?2))'-1/2Ce°/3-2q-3T^] 

y_l/2 ( — qZy-n-W 
+ Z — —[(2q-3)2-q2 ] 

n=0 (2«+l)! 

XC(2q.S)2-(3q)2]---[(2q.S)2-([2W-l]q)2 

X[(2»+l)3»j8-2q.37tf]. (B17) 

The results for j ' ^ 2 are presented in Table II. 

5. Spin | and 1 

Table II gives 

(Pd/2) (q) = - i y ^ = q ^ - 2 (q . $)76 /3, 

so that 

0 

l-i OJ 

[0 —iff-] 

iff 0 J 

(B18) 

Y=-2iS76/3= 

This is just the standard representation of the Dirac 
matrices with 75 diagonal. 

For spin 1, Table II gives 

so that 

(B19) 

Notes added in proof. (1) The external-line wave 
functions are much simpler in the Jacob-Wick helicity 
formalism. They are given for both massive and massless 
particles in a second article on the Feynman rules for 
any spin (Phys. Rev., to be published). (We also give 
general rules for constructing Lorentz-invariant inter
actions involving derivatives, field adjoints, etc.) (2) 
It is not strictly necessary to introduce 2 (2/+ ^-com
ponent fields in order to satisfy P and C conservation, 
because the x* fields in (6.15) and (6.17) may be ex
pressed in terms of <p„ by using (7.17). I would like to 
thank H. Stapp for a discussion on this point. 


